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ABSTRACT 

Laser-induced damage on the tensile side of vacuum-barrier fused silica optics can result in catastrophic fiadure. This 
fracture can lead to two possible modes of failure: a benign failure resulting in a slow air leak into the vacuum chamber or an 
implosion. In previous work, we measured fracture in round vacuum windows and lenses and proposed a 'Yfail-safe" design 
that would insure the benign failure mode by fracturing into only two parts, thus eliminating the possibility of implosion. In 
this paper we extend the previous work to include square vacuum-barrier windows and lenses. These results show that the 
expression developed describing the fhcture area for round lenses: 

Af = 8.4~10-~0,~& 
works equally well for square ones, where Ar is the generated fixture area (cm'), q, the peak tensile stress (psi), and VL the 
window or lens volume (liters). In addition, the effecs of variable ape!rhm size are considered, and we show that the 
maximum tensile stress (MPa) needed to generate a single, fill-aperture fracture in a vacuum banier optic scales as: 

. "  
where Kf is an empirically4etermined constant equal to 3.79 MPa mlR for round optics and 3.32 MF'a mlR fix square 
ones, and e, is the characteristic dimension (diameter or side length) of the window. Comparison of our results with recent 
work by others researching the conditions at which only one hcture will propagate in a glass plate show good agreement. 

KEYWORDS: Glass fracture, Spatial filter lens, laser damage, fused silica, National Ignition Facility 0, glass 
vacuum window design, implosion 

1. INTRODUCTION 

Nova, Beamlet, and National Ignition Facility (NIF) are high-+-power lasers that are being or will be used frr 
Inertial confinement Fusion (rCF) research at Lawrence Livmore National Laboratory (LLm). These laser systems have 
severa~ large vacuum chamber~ along the beam propagation path that use ~aser 
induced damage gn the tensile (vacuum) side of the optic can lead to catastrophe ihcturc. Catastmphic hcture occurs when a 
flaw on the tensile side of the optic exceeds the critical flaw size (based on Griffiths law3 and propagates one or more 
fiacims completely through the optic. Catast~~phic hcture can lead to two possible failure modes: a benign, slow air 
leakage into the vacuum chamber or an implosion. If the Mum results in an implosion, the stored energy released can be 
tremendous for large vacuum chambers like the ones used on NIF (see Table 1). For example, the fixture and implosion of a 
vacuum window on the target chamber would release energy equivalent to 75 MJ. In cornparison, the output of the NIF laser 
is only 1.8 UT. Such an implosion would cause extensive collateral damage to the target chamber, target diagnostics and 
other laser optics and structures. 

Table 1: The volume and stored energy for the three largest vacuum chambers on NIF. 

silica optics as vacuum 

Chamber Type Vacuum Volume Stored Energy in Vacuum 
(m3 Chamber (MJ) 

Cavity Spatial Filter 50 5 
Transwrt S d a l  Filter 93 9.3 

* T&et 750 75 

Previously, Beamlet and NOVA have experienced catastmphic Iiadum of the lenses on the vacuum spatial filters.5" 
Table 2 summarizes the shape, dimensions, and peak stress on the atEdid optics. For comparison the size and peak stress 
for the vacuum barrier optics on the NIF are also shown. The catastrophic hcture of the Beamkt vacuum spatial filter lens, 
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with apeak stress of 1490 psi, resulted in an implosion (-10 large heme pieces). In contrast, the catastrophic hc tm cf 
Nova spatial filter lenses, with a peak stress of 810 psi, produced only one or two fractures. The two or three pieces of glass 
that remain after the fiacture of the Nova lens, lock together resulting in a benign failure, i.e. a slow air leak. The number cf 
hctures, and hence the mode of failure, are related to the peak stress on the glass part. 

Table 2: Physical characteristics and peak stress in fused silica vacuum barrier optics 
used on LLNL fusion research lasers. 

Numberof 
optic Leneth ’Ihickness Peak Stress major 

Apemuel 

fiaauns Failuremode 

Nova Round 52 3.7 810 1-2 Slow air leak 
Laser shape (side or diameter) (psi) 

Beamlet Round 61 3.5 1490 -9-1 1 Implosion 
43.4 - 45 4.3 - 4.6 500 - 

The relationship between the peak stress and the number of fractures in round optics (windows and lenses) was 
investigated by Campbell et al.5’6 An energy partition model was employed to relate the hcture area produced upon faihne to 
the elastic stored energy in the glass part; specifically the greater the elastic stored energy in the stressed optic, the greater the 
numbez of fiactum pxuduced. (Note, the elastic stored energy considered here is not to be codbed with the stored energy 
within the vacuum chamber that was discussed above.) Details of the energy partition model are outlined in the previous 

~ w ~ r k . ~ * ~  The fiacture area (Af) was shown to be related to the peak tensile stress (op) and the volume of the vacuum barrier 
optic (VL): 

A, = k’o’pVL (1) 

where k’ is an empirically derived constant that is primarily a fimction material properties. Because the lkcture area is 
propOrtiOna1 to the square of the peak stress, then a modest change in the peak stress can result in a large change in fkxtme 
area 

In practice, one can reduce the peak stress and the Gracture area by increasing the thickness of the vacuum banier optic. 
This is illustrated by EQ. (2) that relates the peak stress to the optic thickness for a square glass plate that is simply 
supported at the edges: 

where fl is at constant that is dependent on the geometry (fl = 0.2874), q the applied load @@a), I the length of the side (m), 
and t the thickness of the glass plate (m)? 

Unfortunately, increasing the thickness of the lens can advmly afFect the beam quality at high laser intensities. This 
is because the increase in thickness increases the non-lmcar phase retanhcc, which in turn can ampw the noise intensity cf 
the beam. The cumulative non-hear phase retardance is descn’bed by the so-called B integral: 

where AB is the cumulative retardance (radians), I the irradiance (GW/cm2b and 5 the laser wavelength (cm). L is the total 
thickness (cm) of optical material with nonlinear index ooefficien;t, 7 (cm /GW), through which the light The 
general design rule is to limit AB to less than 2 radians so the noise amplification is insuf6cient to cause damage to the 
optics or adversely affect the focusabiity of the beam. Therefore, the thickness of the vacuum banier optic is a tdemff 
between the demands of preventing an implosion vcrsus m-g non-linear noise growth. 

Campbell et al.5’6 used an energy partition model and data fiKMl fracture measurements of a number of Nova fused silica 
spatial filter lenses to determine K in Eq. (l), giving the following expression relating hcture area to the peak stress: 

a’,VL 
cm2 

psi’liter 
A, = 8.4 x 10” (4) 
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3. RESULTS AND DISCUSSION 

3.1 Glass fracture of square plates 
Four different size squareglassplatesweretestedto study the e f k t  of peak stress on the number and arta of fiactms 

generated. The data and calculations firom the hcturc experiments arc summarizbd in Table 3. A typical f?wture paitem of a 
square plate is shown in Fig. 2. The aack originatad h n  the laser-induced flaw at the center of the glass plate and 
propagated to the edges. The depth and width of the laser-induced damage flaw arc reported in the second column of Table 3 
and the maximum peak stress at the time of hcturc is given in column three. Column four contains the number of h c t m  
pieces, and column five lists the total m d  hcturc area, At is given by: 

A f = 2 t &  (54 

Af = 2 t x 4  (sb) 
P 

i=l 

where the total fhcture length, fm (m), is the sum of the lengths of all individual fkicbes, Li (m), and n is the total number 
of fractures. The factor of two in Eq. (5) acwunfs for the two surfsces rreated by each &hue. 

Figure 2 Photograph of a square glass plate (12.5 x 12.5 x 0.6 cm3) that fractured at a 
vacuum load of 746 torr corresponding to a peak tensile stress of 1895 psi. Note the 
hcture initiated h m  the laser-induced damage spot. 

The final column in Table 3 lists the predicted hdun area calculated using Eq. (4). The measured fiactme areas are 
compared to the predicted values in Fig. 3. For comparison, data h m  the earlier study of round glass plates and lenses zue 
also included on the graph. To within the scatter in the measurements, the agreement between the measured and predicted 
b c t m  aresl is quite good for both round and square glass plates. Thus the energy partition model appears valid for both 
square and round lenses. 
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Table 3: Summary of fracture data for square glass plates. 

12.5 x 12.5 x 0.6 

12.5 x 12.5 x 0.5 

20.3 x 203 x 1.0 

a Actual chamber pressure may be lower than indicated by vacuum gauge due to possible flow restriction 

I I I 
0 Round Plates Fused Silka (0.32 X 15 an) 

1oooo- 0 RoundPkitesFusedsmCa(O.64X15cm) 

Square Plates Pilkington (0.59 cm X 12.5 an) 

Square plates Pilkington (0.49 cm X 12.5 

: 8 Nova(3.7anX52an) - H Beamlet (3.5 an X61 an) % @ Nova3oDfoaalens(8oan) - 
0 
Y 

(d 0 Square Plates Pikington (1.00 an X 20.3 an) 

.f 

100 1: 

10 

I 1 I 

10 100 lo00 1 OOOO 

Predicted Fracture Area (cm') 

Figure 3: Measured vs. predicted h t u r e  area for round glass plates (round symbols; data 
fiom campbell et. a1.5) and square glass plates (square symbo~~; data fiom this study). 
The predicted htcture area was calculated using Fq. (4). 
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3.2 Direction of fracture propagation in round and square plates 

Fractures propagate in a direction determined by the gradient of the tensile stress (v a) or, in other words, a 
direction normal the contours of equal tensile stress. For round plates, with u n i f i i  edge support and uaifm slrface 
loading (Le. under vacuum), the maximum principle stress is the tangential (“hoop’’) stress. Thus, fiactms will popgate 
radially across the disk, with one branch traveling in a path that is the shortest distance between the flaw and the edge and the 
other branch in approximately the opposite (180O) direction. For cases where the elastic stored energy is low (i.e. low stress) 
and only one full hcture is generated, the fiactum will approximately bisect the plate (see, for example, Fig. 2 of reference 6). 
Fracture propagation in -plates follows the same principles. Figure 4 shows the is~tress contours computed using 
staudard stress-strain farmulae f a  a simply supported quare glass plate under unifm vacuum load. The direction cf 
propagation of a fiactun is normal to the contours. Thus one can approximate the direction of fbaure propagation Grom a 
damage induced flaw by firsthating the flaw on the contour map and then simply drawing two lines radiating hm the flaw 
in opposite directions and traveling normal to the contours. It is clear that fiadmes will deviate away h m  corners and, in 
principle, will intersect the edge of the plate near No. n e  fktured plate in Fig. 2 shows this behavior. 

Close inspedon of the initial direction of frsscture propagation fhm a laser induced flaw generally shows that it is not 
in a direction normal to the static stress contours. This is because the localked stress generated during the damage event 
greatly exceeds the static stress. Consequently, the small fractures that radiate away from the damage site initially pmpagak 
in a direction determined by the gradient of the transient stress induced by the damage event. If the damage site grows to 
exceed the critical flaw size associated with the static stress field, then one or more of the small damageiinduced fiacanes will 
continue to propagate. The fiacture propagation will eventually bend in a direction normal to the static stress contours. An 
example of such behavior can clearly be seen in Fig. 2 of reference 5. 

Ifthe glass plate is highly stressed (high stored energy) then the propagating fractures soon reach a terminal velocity 
(about 1B to 1/2 sound speed in the glass) where crack growth becomes unstable.12 At this point the crack will branch. 
Although there are some rulessf-thumb to predict crack branching  angle^'"^, in general, accurately predicting the direction of 
crack propagation becomes much more diflicult. 

4 

r 
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-r 
4 . 5  d 015 i 

Figure 4 Iso-stress contours computed for a simply supported square glass p% (12.5 x 12.5 x 0.6 an3) under full vacuum 
load (14.7 psi) and having a Young’s modulus and Poisson’s ratio of 1.06 x 10 psi and 0.22, respectively. The peak tensile 
stress at the center of vacuum side of the plate is approximately 1900 psi. Each contour line represents a decrease of 100 psi 
&om the center of the plate; the x and y dimensions are normalized to the plate half-width 
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3.3 Design criteria for a fail-safe vacuum barrier optic 
In this section we use data limn this study and previous works to develop design Criteria for ‘‘faiESaf’’ round and 

quare vacuum barrier optics. ‘Ihe term fail-safe denotes any vacuum optic that, upon failure, produces no more than one 11l- 
aperhue fracture. In other words, the optic will not implode if it fhctums. 

During hture ,  the energy used to produce new surfaces is proportional to the elastic stored energy, E,, in the material. 
In tum, the stored energy is related to the stress via the expression: 

VL 
E , = k J o  E dV (6) 

0 

where Q is the stress (Pa), E the strain (m), and VL the integrated volume (m3) of the elastic material under stress. The strain 
is related to stress via a Hook‘s law relationship: 

o=E& 0 
where E is Young’s modulus (Pa). Substituting Eq. (7) into (6) and integrating gives the well known expression: 

We have shown in this study and our previous work that the fi-action (fo) of elastic stored energy used to generate new 
stnikes (hctures) is nearly constant e a wide xange of round and square optic sizes (Fig. 3). Thus, the surfke a a g y  
produced during hc tu re  e) can be related to the total elastic stored energy by the expression: 

Ef=foE, or (aa) 

where all the terms have been previously defined. Note that &can also be written as: 

where yf (J/cm2) is the material fi-acture surface energy. Equating Eq. (9) and (10) and rearranging gives an expression for the 
hcture area as a function of the optic volume, peak tensile stress, and the material properties: 

Er=yfAr (10) 

Equation (1 1) is the same as Eq. (1) where K is used to represent the set of constauts (fi WyZ). We have measured 
the ftactun area produced as a function of peak stress and optic volume and determined at a value of k’ equal to 8.4 x 
io-’ cm2/psi2 liter. 

By making use of Eq. (5), Eq. (1 1) can also be written in terms of the total length (I-) 

where we have substituted k’ for (fddyrE). Equation 12 can be fiuther simplified by expressing the volume of the optic in 
terms of its dimensions: 

v, = ce2t (13) 
where I, is the characteristic dimension (diameter or length) and c equals z/4 or 1, respectively, for a round or square optic. 
Substitution of Eq. (13) in (12) leads to the very usefid relationship for total b c t m  length as a function of the peak stress, 
optic shape, and characteristic dimension: 

I It is useful to think of the total ii-acture length, I-, in terms of multiples of the optic dimension: 
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where nf is the number of equivalent 'YbU dimension" hctures. Combining Eq. (14) and (15) leads to the usefbl design 
equation: 

Recall that the design criteria for a ''fail-safe" lens is that nr not exceed one or, expressed in terms of the limiting peak 
stress. is: 

Upon substituting the experimentally-determined value of k', Eq. (17) can be simply written for round optics as: 

op *? ma 0 m 112 - - T p s i  551 m1'2 

where d is the diameter and for square optics: 

3.32 112 - - x p s i  488 e m1I2 o I-MPaorn 
p &  

where s is the length of the side width. Note that s and d refer to the distances across the optic between the vacuum mounting 
surfaces. 

The peak tensile stresses, calculated using Eqs. (18a) and (18b), are plotted as a function of lens size in Fig. 5. The 
corresponding peak stresses for the glass sizes used in the study and for the glass sizes used in LLNL ICF lasers (Nova, 
Beamlet and NIF blamed]) are also marked in the figure. 

The peak tensile stress required to propagate one M-diameter kxture in a 61-cm-diameter Beamlet vacuum spatial 
filter lens is about 700 psi based on Eq. (18a); the actual peak stress on the lens was 1490 psi. Thus it is clear such an optic 
has a high risk of imploding upon catastrophic fracture and, indeed, that failure mode was observed. In sharp contrast, the 
square 42.6-cm NJY spatial filter lens would require a peak stress of nearly 750 psi to propagate one full-width fhcturq the 
design spess on the lens is set at 500 psi, well below the one-fracture limit, insuring the lens will not implode. 

Design Criteria: I -  Round windowhens (Eq. (18a)) 

l l  1600 '..\ ____.-- Square windowhens (Eq. (18b)) 
L 

1400 - 
1200 - 

v) 
Q - 1000 - 
v) 
VI 
2 800 - 
5 

600 - 
400 - 

(s = 12.5 cm) u = 1380 psi 

(s = 20.3 cm) u = 1085 psi 

NIF (s = 42.6 cm) u = 750 psi 
NOVA (d = 52 cm) 0 = 765 psi 
1 Beamlet (d = 61 cm) u = 705 psi 

I 

I 
- 

500 psi 'fail safe' design criteria for NIF 
z 

2oo 0 0 \ 10 20 30 40 50 60 70 80 90 100 110 

Characteristic dimension (cm) 

Figure 5 Predicted peak tensile stress required to produce one fdl-diameter fracture in 
square and round vacuum barrier optics; the prediction is based on Eq. (18a) and (18b). 
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3.4 Other studies of single fracture generation 
Glass sractologists have long sought to develop cmp~cally-basccl methods for diagnosing the conditions under which 

glass parts fhil. Such diagnostic methods am used during p0st-fbihn-e examination of the h c t m  surfsces. One wefd 
diagnostic method is to examine the distance between the initiating (critical) flaw and the first crack branching point Studies 
have shown that this distance is related to the stress at failure via the 

where Kr (MPa mIn) is an empirically-derived constant, @the peak stress (MPa) at failure, and 4, is the distance (m) to the 
first branching point. Thus, by measuring the first branching distance, one can &ate the value of the stress at the time cf 
Mure. The first branching distance is o h  tcnnedthe fmcture "mirror radius" because of it's distinct physical appearance on 
the fhcture sUrf&ce.'=" 

Quinn recently suggested" that the first branching distance (i.e. mirror radius) can be thought of as the maximum 
radius of a glass part that would generate only one iiadue at the corresponding stress (Eq. (19)). Thus it is interesting to 
compare &, determined by fmcture mirror studies, with the value of & measured in this work (see Table 2). The agreemat 
is quite good. Note that this is indeed remarkable; it implies that one simple scaling relationship can be used to descaii 
single hcture generation in round or square glass parts mging in size fkom a few hundred microns up to a meter. 

Table 4: Value of Kr based on data collected by different researchers using Merent measurement methods 
I 

source Kr (MPa mIn) Measurement 
QUinnl5 3.22 Mirrorradius 

o I r I 6  3.03 Mirrorradius 
Present study: round 3.79 Fracture- 

: square 3.32 FlaCtUCe- 

3.5 500 psi Design criteria for NIF vacuum barrier optics 
We have chosen the peak design stress for the NIF vacuum barrier optics to be 500 psi despite the prediction of a "fd- 

&" stress of 750 psi based on Ebq. (18b). There am two reasons for this: the first is to account for the emx bars in our 
measurement of the Eracture area and the second is to compensate for the possibility of secondary saCture.5 Secondary h c t m  
refers to crack growth that occurs subsequent to the initial h c t m  event and is driven by the redistribution of the stress in 
response to the change in boundary conditions. For example, after a square or round optic breaks into two parts, the 
remaining two pieces may remain under load (ifthe gas leak is slow) and each piece now develops a new stress distribution 
in response to the unsupported fracture edge. 

Using finite element analysis, the stress distribution was calculated for a NIF target chamber window before and after 
primary fhcture (see Fig. 6). The peak tensile stress in each of the two halves increased Ihm 499 psi to 812 psi, an mutase 
ofak to r  of 1.6. ARer primary fbctue a portion of the initial flaw may remain in both glass pieces. 'IheEfore secondary 
h c t u x z s  will occur in either piece if the critical stress (based on GSth's Law? is exceeded. Note that the change in the 
stress profile after primary hdure leads to an increase in the elastic stored eneqg in the glass part, and hence a greater 
likelihood of creating more hcture area. To minimize the possibility of secondary fiwture, the peak W-safe design stress 
predicted by Eq. (18b) was reduced Ihm 750 psi to a value of 500 psi. The new 500 psi criteria can be considered as the 
maximum peak stress required to prevent both primary and secondary fracture. 

Finally, another safety factor built into the laser system design is a diagnostic that can detect damage on the optics. 
With a 500-psi peak stress the critical flaw size is approximately 1.5 cm. The diagnostics on NIF are capable of detecting 
flaws less than 1 mm in size, hence the flaw will be easily detected well before any type of catastrophic fiacture can occur. 
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Figure 6 Illustration of secondary fhcture and finite element analysis of the stress 
distribution in target vacuum windows (a) before primary hclure, (b) after primary hcture, 
and (c) after secondary hcture. The peak stress before is 499 psi and after is 812 psi. 

4. ACKNOWLEDGMENTS 

The authors gmteMly acknowledge Kip Hamilton for performing the finite element analysis on the NE Target 
Vacuum Barriers. Work performed under the auspices of the US Department of Energy by Lawrence Livermore National 
Laboratory under contract No. W-7405-Eng-48. 

5. REFERENCES 

1. B. M. VanWonterghcm, J. R Murray, J. H. Campbell, D. R. Speck, C. E. Barker, I. C. Smith, D. F. Browning and 
W. C. Behrendt, Applied Optics 36,49324953 (1997). 

2. “National Ignition Facility Conceptual Design Report” UCRL-PROP-I I7093 (Lawrence Livermore National Laboratory, 
1994). 

3. J. Hunt, D. Speck, Opt. Eng. 28,461-468 (1989). 
4. A. A. Gnffith, Philos. Trans. R Soc. A221,163 (1920). 
5. J. Campbell, P. Hunt, D. Heggins, W. Steele, S. Bumpas, SPIE 2986, 106-125 (1996). 

7. R Roark, W. Young, Formula for Stresses andstrain (New York, 1982). 
8. W. Simmons, J. Hunt, W.. Warren, IEEE .I Quantum Electron QE-17, 1727-1744 (1981). 
9, J. Hunt, J. Glaze, W. Simmons, P. Renard, Appl Opt. 17,2053-2057 (1978). 
10. J. Trenholme, “1975 Laser Program Annual Report“ UCRL-50021-75 (1975). 
11. Timoshenko, Theory of Plates and Shells (1959). 
12. V.D. Frechette, Failure AnaIysis of Brittle Mierials, Am. Ceram. SOC. Press, Ohio (1990) p 28. 
13. J. Mencik, ‘‘Strength and Fracture of Glass and Ceramics“, Elsevier, New York (1992). 
14. S. W. Freiman, ‘‘Fracture Mechanics of Glass”, Chap. 2, Glas:  Science and Tech logy ,  Vol. 5, D. R Uhlmann and 

15. J. Q u i ,  Key Engineering Mieriak 132-136,492-495 (1997). 
16. L. OH, ASTMMateriak Research andSt&& 12,21-23 (1972). 

6. J. Campbell, G. Edwards, J. Mario% SPIE 2633,522-523 (1995). 

N. D. Kreidl (e&.), Academic Press (1980), New York. 

749 


